HIGHER STRENGTH LIGHT WEIGHT

A New Higher Strength, Light Weight Aluminum Replacement for Alloys 7075, 7050 & 7049

ISO 9001:2000 CERTIFIED AS 9100B:2004

ENNALUN

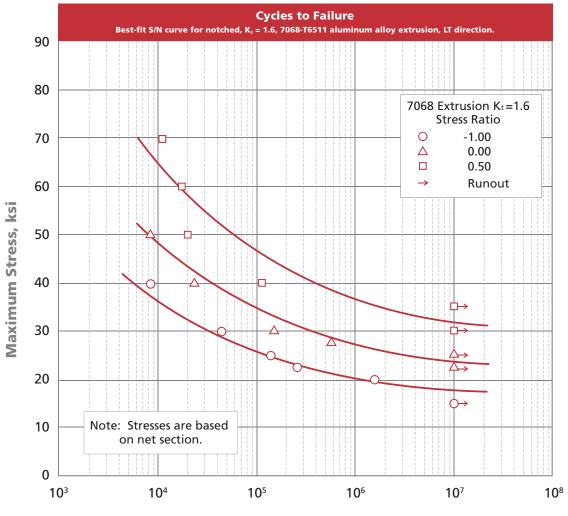
kaiseraluminum.com

MATERIAL SPECIFICATION: AMS 4331 | MMPDS-04

During the mid-90's, the Ordinance Industry requested a **higher strength**, **light weight**, **lead-free aluminum alloy** with corrosion resistance equal to 7075 in the T6511 temper.

Kaiser Aluminum Alloy 7068-T6511 is registered in the handbook <u>Metallic Materials</u> <u>Properties Development and Standardization (MMPDS-04)</u> which is known to be used by the Federal Aviation Administration (FAA) and all departments and agencies of the Department of Defense (DOD) and the National Aeronautics and Space Administration (NASA).

pecification	AMS 4331					
orm	Extrusions					
Temper	T6511					
Thickness or Diameter, (in.)		0 - 0.749	0.750 - 3.000			
Basis	A	В	A	В		
Mechanical Properties						
F _{tu} , ksi: L	99	102	99	102		
	88		88	91		
ST	88	91	88	89		
F _{tv} , ksi:	0/	09	0/	09		
L	95	98	95	98		
LT	81	83	81	83		
ST	78	81	78	81		
F _{cy} , ksi:						
Ĺ	-	-	95	98		
LT	-	-	90	93		
ST	-	-	86	89		
F _{su} ª, ksi:						
L-S	-	-	50	51		
T-S	-	-	50	51		
S-L	-	-	50	52		
F_{bru}^{b} , ksi: L, LT (e/D = 1.5) ^c			122	105		
			122	125		
L, LT (e/D = 2.0) ^c ST (e/D = 1.5)			158	163		
ST (e/D = 1.5) ST (e/D = 2.0)			123	127		
$F_{bry^{b}}$, (e/D = 1.5) ksi:			159	164		
L, LT $(e/D = 1.5)^{c}$	_	_	107	110		
L, LT $(e/D = 2.0)^{c}$	-	_	129	133		
ST (e/D = 1.5)	-	-	107	111		
ST (e/D = 2.0)	-	-	130	134		
e, percent (S-Basis):						
L	5	-	5	-		
LT	-	-	-	-		
ST	-	-	-	-		
E, 10 ³ ksi:						
L	10.6					
LT	10.5					
ST 5 1031-cit	10.1					
E , 10 ³ ksi: L, LT, & ST		10	17			
G, 10 ³ ksi:	10.7					
μ						
μ Physical Properties						
ω, lb./in. ³		0.103 (a	it 68 °F)			
C, BTU/(lb)(°F)	0.25 (at 212 °F)					
K, and α		-				
	Mat					
	Not	es				
Issued: Apr 2008, MMPDS-04						


MMPDS-04 1 April 2008

b. Bearing values are "dry pin" values per Section 1.4.7.1

c. Lowest reduced ratio of L and LT used to generate minima

Fatigue testing was done at room temperature in accordance with ASTM E466 on polished specimens machined in the LT orientation with a theoretical stress concentration of 1.60 and at stress ratios of -1.00, 0.00 and 0.50. The fatigue tests were conducted with servo-hydraulic test equipment employing a 60 hertz sinusoidal waveform. The run-out (discontinued test) condition was defined as 10,000,000 cycles.

Maximum Stress vs. Fatigue Life

Fatigue Life, Cycles

This chart illustrates the properties of Alloy 7068 products in a limited number of tests. Users shall conduct their own development testing to determine the fitness for the intended end use.

Correlative Information

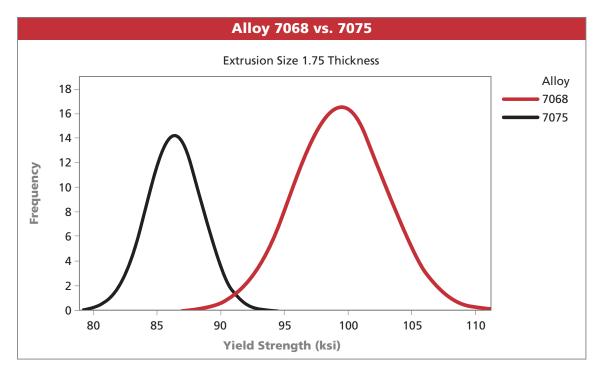
Properties:

UTS = 93.0 ksi, TYS = 85.7 ksi, Elongation = 8.0%, Gage length = 1.40 in.

Specimen Details: Notched, 2 in. x 4.5 in. rectangular bar

Test Parameters: Loading – Axial Frequency – 60 Hertz Temperature – RT Atmosphere – Air

Equivalent Stress Equation:


 $Log N_f = 9.101-3.498 log (S_{eq}-19.71) \\ S_{eq} = S_{max} x (1-R)^{0.424} \\ Std. Error of Estimate, Log (Life) = 10.6 x 1/S_{eq} \\ Std. Deviation, Log (Life) = 0.970 \\ R^2 = 90.7\%$

Documented industry data shows that 7068-T6511 has typical ultimate tensile strength of 103 ksi versus a similar product produced from 7075-T6511 that would have a typical ultimate tensile strength of 93 ksi.

Typical yield strength for alloy 7068-T6511 is 99 ksi versus 86 ksi for a similar product produced from 7075-T6511.

ELEVATED TEMPERATURE PROPERTIES

The figures below show the effects of time and temperature (all testing was done at temperature) for 1.75" diameter 7068-T6511 extrusions having a room temperature yield strength of 93.5 ksi.

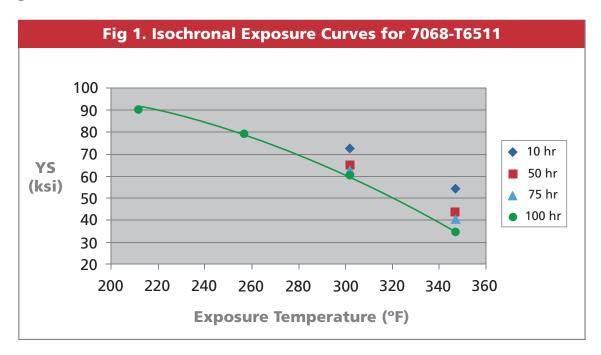


Fig 2. Isothermal Exposure Curves for 7068-T6511 100 90 80 212°F (100°C) 70 YS 257°F (125°C) 60 (ksi) ▲ 302°F (150°C) 50 347°F (175°C) 40 30 20 40 0 20 60 100 120 80 **Exposure Time (hr)**

These charts illustrate the properties of Alloy 7068 products in a limited number of tests. Users shall conduct their own development testing to determine the fitness for the intended end use.

APPLICATIONS

Primarily developed for Ordinance applications, Alloy 7068 is now being used or considered for various markets like Aerospace and Automotive (valve body and connecting rod applications), as well as Recreational Products (bicycles).

In addition to rectangles, Alloy 7068 is produced in squares and rounds, all readily available in production quantities.

Chemical Composition Limits							Others				
Weight %	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ті	Zr	Each	Total
Minimum			1.60		2.20		7.30		0.05		
Maximum	0.12	0.15	2.40	0.10	3.00	0.05	8.30	0.10	0.15	0.05	0.15

Technical Data – Alloy 7068

Typical Physical Properties							
Characteristic		Eng	Jlish	Metric			
Nominal Density (68 °F / 20 °C) 0.103 lbs		lbs./in.³	2.85 Mg/m ³				
Melting Range		890 °F - 1175 °F		476 °C - 635 °C			
Specific Heat (212 °F / 100 °C)		0.25 BTU/lb °F		1050 J/kg - °K			
Electrical Conductivity (68 °F / 20 °C)	Equal Volume	T6, T6511	31% IACS	18.0 MS/m			
		T76, T76511	38% IACS	22.0 MS/m			
Electrical Resistivity (68 °F / 20 °C)	T6, T6511			49.4 micro ohm meter			

NEW INDUSTRY APPLICATIONS

Alloy 7068 is now specified to manufacture a hydraulic valve component commonly used for heavy equipment. This component was formerly produced with Alloy 7075, however the presence of stress cracks dictated the change to Alloy 7068.

Fitness for Intended Use

This information illustrates the properties of Alloy 7068 products in a limited number of tests. Users must conduct their own development testing to determine the fitness for the intended end use.

27422 Portola Parkway | Suite 350 | Foothill Ranch, CA 92610-2831 P 949-614-1740 | F 949-614-1930 | kaiseraluminum.com

